Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(4): 1264-1273, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227816

RESUMO

OBJECTIVE: The purpose of this study was to investigate alpha power as an objective measure of effortful listening in continuous speech with scalp and ear-EEG. METHODS: Scalp and ear-EEG were recorded simultaneously during presentation of a 33-s news clip in the presence of 16-talker babble noise. Four different signal-to-noise ratios (SNRs) were used to manipulate task demand. The effects of changes in SNR were investigated on alpha event-related synchronization (ERS) and desynchronization (ERD). Alpha activity was extracted from scalp EEG using different referencing methods (common average and symmetrical bi-polar) in different regions of the brain (parietal and temporal) and ear-EEG. RESULTS: Alpha ERS decreased with decreasing SNR (i.e., increasing task demand) in both scalp and ear-EEG. Alpha ERS was also positively correlated to behavioural performance which was based on the questions regarding the contents of the speech. CONCLUSION: Alpha ERS/ERD is better suited to track performance of a continuous speech than listening effort. SIGNIFICANCE: EEG alpha power in continuous speech may indicate of how well the speech was perceived and it can be measured with both scalp and Ear-EEG.


Assuntos
Couro Cabeludo , Fala , Eletroencefalografia , Percepção Auditiva , Auscultação
2.
Technol Health Care ; 28(1): 57-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31104032

RESUMO

Analysis of human brain activity is an important topic in human neuroscience. Human brain activity can be studied by analyzing the electroencephalography (EEG) signal. In this way, scientists have employed several techniques that investigate nonlinear dynamics of EEG signals. Fractal theory as a promising technique has shown its capabilities to analyze the nonlinear dynamics of time series. Since EEG signals have fractal patterns, in this research we analyze the variations of fractal dynamics of EEG signals between four datasets that were collected from healthy subjects with open-eyes and close-eyes conditions, patients with epilepsy who did and patients who did not face seizures. The obtained results showed that EEG signal during seizure has greatest complexity and the EEG signal during the seizure-free interval has lowest complexity. In order to verify the obtained results in case of fractal analysis, we employ approximate entropy, which indicates the randomness of time series. The obtained results in case of approximate entropy certified the fractal analysis results. The obtained results in this research show the effectiveness of fractal theory to investigate the nonlinear structure of EEG signal between different conditions.


Assuntos
Eletroencefalografia/métodos , Epilepsia/patologia , Processamento de Sinais Assistido por Computador , Algoritmos , Fractais , Humanos
3.
Technol Health Care ; 27(3): 233-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30829625

RESUMO

Brain activity analysis is an important research area in the field of human neuroscience. Moreover, a subcategory in this field is the classification of brain activity in terms of different brain disorders. Since the Electroencephalography (EEG) signal is, in fact, a non-linear time series, employing techniques to investigate its non-linear structure is rather crucial. In this study, we evaluate the non-linear structure of the EEG signal between healthy and schizophrenic adolescents using fractal theory. The results of our analysis revealed that in terms of all recording channels, the EEG signal of healthy subjects is more complex compared to the ones suffering from schizophrenia. The statistical analysis also indicated that there is a significant difference in the complex structure of the EEG signal between these two groups of subjects. We also utilized approximate entropy in our analysis in order to verify the obtained results of the fractal analysis. The result of the entropy analysis suggested that EEG signal for healthy subjects is less random compared to the EEG signal in schizophrenic individuals. In addition, the employed methodology in this research can be further investigated in order to classify the brain activity in terms of other brain disorders, where one can explore how the complex structure of the EEG signal alters between them.


Assuntos
Eletroencefalografia/métodos , Fractais , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Adolescente , Feminino , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...